ZXHQ-B+ 变频互感器<mark>综合</mark>测试仪

序 言

尊敬的用户:

您好!感谢您选用的我司产品。为了正确使用本仪器,请您在使用本仪器 之前仔细阅读本说明书,特别是"安全注意事项"部分。

如果您已经阅读完本说明书全文,建议您将此说明书进行妥善的保管,与 仪器一同放置或者放在您随时可以查阅的地方,以便在将来的使用过程中进行 查阅。

安全注意事项

- 为了保护设备及人身安全,做试验前请详细阅读使用说明书,严格按说明书 操作。
- 2. 勿将本仪器置于不平稳的平台或桌面上以防仪器跌落受损。
- 3. 仪器侧面的风扇、通风孔为通风散热而设,为保证仪器正常工作,请勿堵塞。
- 本仪器是精密电子仪器,请在室外使用时注意防止烈日暴晒等高温环境,注 意做好遮挡烈日及通风工作,以防仪器过热或导致测量精度下降。
- 5. 作为安全措施,该仪器配有保护接地端子,试验前应将装置侧面的接地端子 可靠接地。
- 6. 装置工作电源为 220V (50/60Hz) 交流电源,应选用 10A 及以上的电源线。
- 7. 不要让任何异物掉入机箱内,以免发生短路。
- 运输时请在仪器外面铺垫海绵等缓冲保护物,以免振动颠簸损坏仪器或降低 仪器精度。
- 9. 请勿随意删除主机保存的历史试验记录,避免造成试验数据丢失。

<i>—`</i> ,	产品概述	- 3	-
<u> </u>	性能特点	- 3	_
三、	技术参数	- 4	_
四、	面板说明	- 4	_
五、	用户接口和操作方法	- 5	_
1.	电流互感器试验	- 5	_
2.	电压互感器试验	10	_
3.	自测页	13	_
4.	功能按钮	15	_
六、	PC 机操作软件使用说明	19	_
1.	界面说明	19	_
2.	生成 WORD 报告	23	_
附录	<u>t</u>	26	_
Α.	低频法测试原理	26	_
В.	10%误差曲线计算和应用方法	27	_
С.	用于各种 CT 的实际接线方式	28	_
D.	四端法接线的测量原理	31	_
七、	售后服务	32	_

一、产品概述

本仪器是由本公司在广泛听取用户意见、经过大量的市场调研、深入进行 理论研究之后研发的新一代的电流、电压互感器测试仪器。装置采用高性能 DSP 和 ARM、先进的制造工艺,保证了产品性能稳定可靠、功能完备、自动化程度高、 测试效率高、在国内处于领先水平,是电力行业用于互感器的专业测试仪器。

二、性能特点

- 功能全面,既满足各类 CT(如:保护类、计量类、TP类)的励磁特性(即 伏安特性)、变比、极性、二次绕组电阻、二次负荷、比差以及角差等测试 要求,又可用于各类 PT 电磁单元的励磁特性、变比、极性、二次绕组电阻、 比差以及角差等测试。
- 自动给出拐点电压/电流、10%(5%)误差曲线、准确限值系数(ALF)、仪表 保安系数(FS)、二次时间常数(Ts)、剩磁系数(Kr)、饱和及不饱和电感等 CT、PT 参数。
- 测试满足 GB1208(IEC60044-1)、GB16847(IEC60044-6)、GB1207 等各类
 互感器标准,并依照互感器类型和级别自动选择何种标准进行测试。
- 4. 基于先进的低频法测试原理, 能应对拐点高达 45KV 的 CT 测试。
- 5. 界面友好美观,全中文图形界面。
- 装置可存储 2000 组测试数据,掉电不丢失。试验完毕后用 U 盘存入 PC 机, 用软件进行数据分析,并生成 WORD 报告。
- 测试简单方便,一键完成 CT 直阻、励磁、变比和极性测试,而且除了负荷 测试外,CT 其他各项测试都是采用同一种接线方式。
- 8. 易于携带,装置重量<9Kg。

三、技术参数

测记	式用途	保护类 CT,保护类 PT				
# 1	俞出	0 [~] 180Vrms, 12Arms, 36A(峰值)				
电压测	则量精度	$\pm 0.2\%$				
CT 变比	范围	1~30000				
测量	精度	$\pm 0.2\%$				
PT 变比	范围	1~10000				
测量	精度	±0.2%				
扣侍测具	精度	±5min				
们们们则里	分辨率	0.5min				
二次绕组	范围	0~300 Ω				
电阻测量	精度	$2\% \pm 2m \Omega$				
交流负载	范围	0~300VA				
测量	精度	$2\% \pm 0.2$ VA				
输入电源电压		AC220V±10%, 50Hz				
工作	乍环境	温度: -10 ° C~50 ° C, 湿度: ≤90%				
尺寸	、重量	尺寸 33cm x 29.4cm x 18cm 重量<9kg				

四、面板说明

- 1. 红黑 S1、S2 端子: 试验电源输出
- 2. 黄黑 M1、M2 端子: 输出电压回测
- 3. 绿黑 P1、P2 端子: 感应电压测量端子
- 4. 旋转鼠标: 输入数值和操作命令

5. 液晶显示屏:中文显示界面

6. 打印机: 打印测试报告

五、用户接口和操作方法

1. 电流互感器试验

在参数界面,用 旋转鼠标切换光标到互感器类型栏,选择互感器类型为电 流互感器。

1) 试验接线

Γ

试验接线步骤如下:

第一步:根据表1描述的CT试验项目说明,依照图1或图2进行接线(对于各种结构的CT,可参考附录D描述的实际接线方式)。

				表1 CT 试验项目说明	
电阻	励磁	变比	负荷	说明	接线图
\checkmark				测量 CT 的二次绕组电阻	图 1, 但一次侧可以不接
\checkmark	\checkmark			测量 CT 的二次绕组电阻、励磁 特性	图 1, 但一次侧可以不接

\checkmark		~		测量 CT 的二次绕组电阻, 检查 CT 变比和极性	图 1
\checkmark	\checkmark	\checkmark		测量 CT 的二次绕组电阻、励磁 特性,检查 CT 变比和极性	图 1
			\checkmark	测量 CT 的二次负荷	图 2

图 2 CT 二次负荷试验接线方式

第二步:同一 CT 其他绕组开路, CT 的一次侧一端要接地,设备也要接地。 第三步:接通电源,准备参数设置。

2) 参数设置

试验参数设置界面分别如图 3

参 数 <u>结 果</u> 类 型:CT 编	<u>自测</u> 号:0 绕组:1S1-1S2	开始
项 目: ☑电阻 当前温度:25	☑ 励磁 ☑ 变比 □负荷 ℃ 二次电流:1 A	报告
额定功率: <u>50</u> 最大电流: <u>1</u> Sp/coed₀:5	<u>Hz</u> 绕组级别:P <u>A</u> 一次电流: <u>600 A</u> W4/0 & A15:10 0	打印
510 COS\$.	VAY 0.0 AIT.10.0	「工具
		帮助
計 绪	2010-03-22	18:55:2

图 3 基本参数设置界面

参数设置步骤如下:

用旋转鼠标切换光标到要设置的参数位置。

① 线路号、相别、CT 编号、绕组号:可输入字母和数字,默认保存的报告 文件名为 "CT_线路号_相别_CT 编号_绕组号."。

② 额定二次电流 ^{Sn}:电流互感器二次侧的额定电流,一般为 1A 和 5A。
 ③ 级别:被测绕组的级别,对于 CT,有 P、TPY、计量、PR、PX、TPS、TPX、TPZ 等 8 个选项。

④ 当前温度:测试时绕组温度,一般可输入测试时的气温。

⑤ 额定频率:可选值为: 50Hz 或 60Hz。

⑥ 最大测试电流:一般可设为额定二次电流值,对于 TPY 级 CT,一般可设为2 倍的额定二次电流值。对于 P 级 CT,假设其为 5P40,额定二次电流为 1A,那么最大测试电流应设 5%*40*1A=2A;假设其为 10P15,额定二次电流为 5A,那么最大测试电流应设 10%*15*5A=7.5A。

对于不同级别的CT,扩展参数的设置也不同,见表2。

	表 2 CT 扩展参数描述								
参数	描述	Р	T P Y	计 量	P R	Р Х	T P S	T P X	T P Z
额定一次电流	用于计算准确的实际电流比	\checkmark							
额定负荷, 功率因数	铭牌上的额定负荷,功率因数为0.8 或1	\checkmark							
额定准确限值 系数 K_{alf}	铭牌上的规定,默认:10。用于计算 极限电动势及其对应的复合误差	\checkmark							
额定对称短路 电流系数 K_{ssc}	铭牌上的规定,默认:10。用于计算 极限电动势及其对应的峰瞬误差		\checkmark				\checkmark	\checkmark	\checkmark
额定暂态面积 系数 K_{td}	铭牌上的规定,默认:20		~					\checkmark	\checkmark
一次时间常数	默认: 100ms		\checkmark		Å			\checkmark	\checkmark
二次时间常数	默认: 3000ms		\checkmark						\checkmark
工作循环	C-t1-0或C-t1-0-tfr-C-t2-0,默认: C-t1-0循环		\checkmark					\checkmark	
t1	第一次电流通过时间,默认: 100ms		\checkmark				e.	\checkmark	
tal1	一次通流保持准确限值的时间,默认: 40ms								
tfr	第一次打开和重合闸的延时,默认: 500ms。选择 C-t1-0-tfr-C-t2-0 循环 才显示		~					\checkmark	
t2	第二次电流通过时间,默认:100ms。 选择 C-t1-0-tfr-C-t2-0 循环才显示		\checkmark		\checkmark			\checkmark	
tal2	二次通流保持准确限值的时间,默认: 40ms 选择 C-t1-0-tfr-C-t2-0 循环才显示		\checkmark					\checkmark	
额定仪表保安 系数	铭牌上的规定,默认值:10。 用于计算极限电动势及其对应的复合 误差			\checkmark					
扩大电流标定 ext	范围: 100%~400%, 默认: 120%			\checkmark					
额定计算系数						\checkmark			
额定拐点电势 Ek						\checkmark			
Ek 对应的 Ie						\checkmark			
面积系数							\checkmark		
│ 额定 Ual	额定等效二次极限电压						\checkmark		
Ual 对应的 Ial							√		

第五步:选择右边的开始按钮进行试验。

3) 试验结果

试验结果页,界面分别如图4。

阻	电阻	75 °C	18.91	1Ω	
	V-kn	13603 V	Lu	97.10 H	194
励	I-kn	0.6649 A	Kr	0.1100	误差
	Eal	19567 V	Ts	1.985 s	数据
			Kssc	12.48	「治業
磁	Ktd	26.70	ξ		曲线
变	变比	100 %	2500:	0.9943	励磁
	匝比	2514.3	比差	-0.567%	数据
	极性	反极性/+	角差	5.854'	同磁
比					曲线

图 4 试验结果界面

对于不同级别的 CT 和所选的试验项目,试验结果也不同,见表 3。

		表 3 CT 试验结果描述			V	2				
	试验结果	描述	Р	T P Y	计 量	P R	Р Х	T P S	T P X	T P Z
占	实测负荷	单位: VA, CT 二次侧实测负荷	\checkmark							
贝 荷	功率因数	实测负荷的功率因数	\checkmark							
Jhî	阻抗	单位: Ω, CT 二次侧实测阻抗	\checkmark							
电 阻	电阻(25℃)	单位: Ω,当前温度下 CT 二次绕组电阻	~	\checkmark						
	电阻(75℃)	R _{ref} , 单位: Ω, 折算到 75℃下的电 阻值	\checkmark							
励 磁	拐点电压和拐 点电流	单位:分别为V和A,根据标准定义, 拐点电压增加10%时,拐点电流增加 50%。	\checkmark							
	不饱和电感 L_u	单位: H, 励磁曲线线性段的平均电感	\checkmark							
	剩磁系数 К,	剩磁通与饱和磁通的比值	\checkmark							
	二次时间常数 T_s	单位: s, CT 二次接额定负荷时的时间 常数	\checkmark							

	极限电动势 E_{al}	单位: V, 根据 CT 铭牌和 75℃电阻计 算的极限电动势	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
	复合误差 ^{<i>E</i>_{al}}	极限电动势 <i>E_{al}</i> 或额定拐点电势 Ek 下的复合误差	\checkmark		\checkmark	\checkmark	\checkmark			
	峰瞬误差 <i>8</i>	极限电动势 ^E al下的峰瞬误差		\checkmark					\checkmark	\checkmark
	准确限值系数	实测的准确限值系数	\checkmark			\checkmark				
	仪表保安系数	实测的仪表保安系数			\checkmark					
	对称短路电流 倍数 Kssc	实测的对称短路电流倍数		\checkmark				\checkmark	\checkmark	\checkmark
	暂态面积系数	实际的暂态面积系数		\checkmark					\checkmark	\checkmark
	计算系数 Kx	实测的计算系数					\checkmark			
	额定拐点电势 Ek						\checkmark			
	Ek 对应的 Ie	额定拐点电势对应的实测励磁电流					\checkmark			
	额定 Ual	额定等效二次极限电压						\checkmark		
	Ual 对应的 Ial	额定等效二次极限电压对应的实测励磁电流				•		\checkmark		
变	变比	额定负荷下的实际电流比	\checkmark							
比	匝数比	被测试的二次绕组与一次绕组的实际 匝比	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark	\checkmark	\checkmark
	比值差	额定负荷下的电流误差	\checkmark							
	相位差	额定负荷下的相位差	\checkmark							
	极性	CT 一次和二次的极性关系,有同极性/ 一(减极性)和反极性/+(加极性) 两种	\checkmark							
	匝比误差	实测匝数比与额定匝比的相对误差					\checkmark	\checkmark		

2. 电压互感器试验

在参数界面,用 旋转鼠标切换光标到互感器类型栏,选择互感器类型为电 压互感器。

1) 试验接线

试验接线步骤如下:

第一步:根据表4描述的PT试验项目说明,依照图5或图6进行接线。

			表 4 PT 试验项目说明	
电阻	励磁	变比	说明	接线图
\checkmark			测量 PT 的二次绕组电阻	图 5, 一次侧必须断开
~	\checkmark		测量 PT 的二次绕组电阻、励磁 特性	图 5, 一次侧必须断开
		\checkmark	检查 PT 变比和极性	图 6

图 6 PT 变比、极性试验接线方式

第二步:同一PT 其他绕组开路。

第三步:接通电源,准备参数设置。

2) 参数设置

PT 的试验参数设置界面如图 7。

参数 <u>结果 自测</u> 类型:PT 编号:0 绕组:1S1-1S2	开始
项 目: ☑电阻 ☑ 励磁 □ 变比 当前温度:25 ℃ 二次电压:1 Ⅴ	报告
额定切率:50 肚 绕组级别:P 最大电流:1 A 最大电压:100 ▼	打印
	工具
	帮助
就绪 2010-03-22	18:55:2

图 7 PT 参数设置界面

参数设置步骤如下:

- 用 旋转鼠标 切换光标到要设置的参数位置。
- ① 线路号、相别、PT 编号、绕组号可输入字母和数字。
- ② 额定二次电压 Vsn: 电压互感器二次侧的额定电压。
- ③ 级别: 被测绕组的级别,有 P、计量等 2 个选项。
- ④ 当前温度:测试时绕组温度,一般可输入当时的气温。
- ⑤ 额定频率:可选值为: 50Hz 或 60Hz。
- ⑥ 最大测试电压:试验时设备输出的最大工频等效电压。
- ⑦ 最大测试电流:试验时设备输出的最大交流电流。第四步:选择右边的开始按钮进行试验。
- 3) 试验结果

试验结果页,如图8。

阻	电阻	75 °C	18.91	Ω	
	V-kn	188.7 V			1
励	I-kn	0.2217 A			
磁					
变	变比		20 k	v:200.0 V	励磁
	匝比	100.5	比差	0.01 %	数据
	极性	同极性/-	角差	13.08 '	「励磁
比			ť.		曲线

图 8 P级PT的试验结果界面

对于不同级别的 PT 和所选的试验项目,试验结果也不同,见表 5。

		表 5 PT 试验结果描述		
	试验结果	描述	Р	计量
由四	电阻(25℃) <i>R</i>	单位: Ω,当前温度下的电阻	\checkmark	\checkmark
巴阻	电阻(75℃) ^R ref	单位: Ω,参考温度下的电阻值,温度可修改	\checkmark	\checkmark
励磁	拐点电压和拐点电流	单位:分别为 V 和 A,根据标准定义,拐点电压增加 10%时,拐点电流增加 50%。	\checkmark	\checkmark
	变比	额定负荷或实际负荷下的实际电流比	\checkmark	\checkmark
	匝数比	被测试的二次绕组与一次绕组的实际匝比	\checkmark	\checkmark
变比	比值差	额定负荷或实际负荷下的电流误差	\checkmark	\checkmark
	相位差	额定负荷或实际负荷下的相位差	\checkmark	\checkmark
	极性	PT 一次和二次的极性关系,有同极性/-(减极性)和反极性/+(加极性)两种	\checkmark	\checkmark

3. 自测页

自测界面如图 9。在万用表帮助下,自测功能可用于检查设备是否损坏,测 量电路是否正常。

图 9 自测测试界面

1) 参数设置

自测测试所需的参数如下表:

	表 6 自测测试参数
参数	描述
测试电流	需要装置输出的电流,有效值范围: 1mA [~] 5A
测试电压	需要装置输出的电压,有效值范围: 1V [~] 100V
测试频率	需要装置输出电压或电流的频率,范围: 0 [~] 50Hz

测试电流或测试电压设置后,设置测试频率,装置将输出对应频率的电压 或电流,并显示检测到的实际电压或电流。在选择电压后,如果负载太小,导 致实际电流有效值大于 5A,则显示过载信息。在选择电流后,如果负载太大, 导致实际测试电压有效值大于 100V,则也会显示过载信息。

2) 接线方法

① 选择电压测试时,将 S1 短接另一个 M1, S2 短接另一个 M2。用万用表电 压档测量 S1 和 S2 之间的电压,若与实际电压相符,说明设备能够输出电压且 电压测量环节正常。

② 电流测试时,将电源输出的 S1、S2 端子短接。电压回测的 M1、M2 不接。 可在输出的 S1 和 S2 之间串入万用表电流档,若万用表测量的电流与实际电流 相符,说明设备能够正常输出电流且电流测量环节正常。

4. 功能按钮

1) 参数页功能按钮

① 打开报告

报告界面,如图 10。选择打开某个试验报告,该报告的参数信息和数据会显示到各个页的对应栏目中。

序号	报告文件	101 100	已用 1	%		
1	AU	_151-152.	ctp	∠ _		1
					打开	
				— C	保存	
线路号	;.0	相	别: A	C	导出	
T编号	; 0			ſ	清空	4
皖组内 试验时	៖:1S1−1S2 †间:2010−	03-22 18	:30:06		返回	

图 10 打开试验报告界面

② 保存报告

报告界面,如图11。

序号	报告文件	已用 1%	
1	CT_0_A_0_1S1-	-1S2.ctp	
- 2 			1
			返回

③ 系统工具

系统工具界面,如图 12。在该界面中可以进行时间校对、系统升级等操作。 其中:调试用于出厂调试,升级用于软件界面的升级。

⑤ 打印

用户可以打印当前报告,此报告可做为现场试验的原始记录。

- 2) 结果页功能按钮
 - ① 误差数据

选择误差数据将显示 5%和 10%误差情况下,额定一次电流倍数与最大负荷

之间的关系数据界面,如图14。界面中给出的数据是根据实际励磁测试数据计

算得到的。计算方法见附录 B。

序号	5%_阻抗	5%_倍数	
拐点	19.44 Ω	13.2	5%
1	39.86 Ω	2.01	
2	39.86 Ω	2.25	1.0%
3	39.86 Ω	2.52	实测
4	39.86 Ω	2.85	
5	39.86 Ω	3.18	10% ਸੁਰੁੁੁੁੁੱਖ
6	39.86 Ω	3.57	
7	39.86 Ω	4.01	
8	39.86 Ω	4.49	1 返回

图 14 5%误差数据界面

② 误差曲线

选择误差曲线,将显示10%(或5%)误差情况下,额定一次电流倍数与最 大负荷之间的关系曲线界面,如图15。界面中横坐标为额定一次电流倍数,纵 坐标为允许的最大负荷。

图 15 10%误差曲线界面

③ 励磁数据

选择励磁数据将显示励磁数据界面,如图 16,界面中给出了自动计算出来 的拐点电压和拐点电流。

序号	测试电流	测试电压	1
拐点	0.6649 A	13603 V	
1	0.000293 A	5.0842 V	
2	0.000334 A	5.9402 V	
3	0.000375 A	6.7367 V	
4	0.000451 A	8.4106 V	
5	0.000505 A	9.2422 V	↓ 収整 新提
6	0.000522 A	10.072 V	2016
7	0.000567 A	10.896 V	
8	0.000649 A	12.556 V	

图 16 励磁数据界面

④ 励磁曲线

选择励磁曲线将显示励磁曲线界面,如图 17,界面中给出拐点电压和拐点

电流。

⑤ 比值差表

选择比值差表将显示不同额定电流百分比和不同负荷值情况下被测 CT 的比值差表,如图 18:

额定负载	%额定电	流的比差]
VA/Cos 🕈	1	5	
30.00/0.8	-0.026	-0.033]
22.50/0.8	-0.010	-0.015	
15.00/0.8	0.006	0.003	T
7.50/0.8	0.022	0.020	1 由美
3.00/0.8	0.032	0.030	
			返回
		2010-03-22	18:55:2

图 18 比值差表界面

⑥ 相位差表

选择相位差表将显示不同额定电流百分比和不同负荷值情况下被测 CT 的相位差表如图 19:

额定负载	%额定日	<u>电流的角差</u>
VA/Cos 🖗	1	5
30.00/0.8	4.09	3.90
22.50/0.8	3.58	3.44
15.00/0.8	3.04	2.98
7.50/0.8	2.51	2.47
3.00/0.8	2.19	2.19

图 19 相位差表界面

六、PC 机操作软件使用说明

对于测试仪的试验报告,可以通过 PC 机操作软件来完成对试验源数据文件的分析和生成 WORD 报告。

1. 界面说明

PC 机操作软件界面如图 20。

文件夹 文件比较	生成报告 打开报告		
件夹	匚 全选	参数 曲线 数据 变比	
e arm_soft	文件名 备注 0_A_0_1S1-1	UM 励磁曲线	
- CT-VI		39.8	A
Experiment pc_soft crp_2000		35.0 31.1	B
Ficture Frogram		27.3	C
 Reference Favorites 		19.6	a
inp5 ⊯ soft-mbf ⊕ Subject		11.9	(b
田 公司文件 田 成宁相片			c
田 #20100万 田 继保仪调试装置 田 F:\			(A)
-H:\ -H:\			
dsp dsp 说明书图片		Z(Ω) 5%误差曲线 Z(Ω) 10%误差曲线	1 • A
⊕ 61ic everest NGT cry48c+		3.0 3.0 3.5 3.5 3.5	▼B
ct_tester t_CTP_0814		2.7 2.4 3.1 2.8	
 I ZJZSS2 I 专利 		2.0 2.5 2.2	
ETF-2009.08.14 ■ PMA ■ 软件界面(1.20)			
CTP-2009.08.14 CTP-1999.12.14			+
+ bry10		0.5 0.2 Million Million Million 0.5 0.6 Million Million 0.6	MIGN

图 20 PC 机操作软件界面

① 文件夹

当该按键处于"按下状态"时,显示文件夹目录。当按键处于"弹起状态"时,隐藏文件夹目录。

② 文件比较

当该按键处于"按下状态"时,从文件列表中选定多个数据源文件进行数据处理,选中的文件分别标注(A、B、C、a、b、c)标签,顺序由A->c,并且用颜色表示。若右侧显示页显示曲线时,将显示多条曲线进行比较,若显示页显示其它数据,则仅显示当前源文件的数据信息。

③ 生成报告

按照"文件比较"按键的状态将选定的源文件生成 WORD 试验报告。

当"文件比较"按键处于"弹起状态"时,仅将所选源文件转换成 WORD 试验报告。

当"文件比较"按键处于"按下状态"时,将所定的多个源文件合并生成 WORD试验报告。报告中将不记录励磁、5%误差、10%误差实测值,而只记录取整 值,以利于进行数据比较。

④ 打开报告

使用 OFFICE 软件打开已经生成的 WORD 试验报告。

⑤ 参数页

参数页(图 21)显示试验源文件的数据信息。不同的 CT 类型显示不同的参数,其中包括电阻信息,励磁信息,变比信息,负荷信息。

	关约 mt + +++	2 โสรมป			
	学校 曲线 数据	5 XLL			
arm_soft 0 A 0 1S1-1	5V023230	1.00	Control -		
⊕ Circuit	参数名	自海军成员	参数名		
- CI-VI	立愿奋兴堂: 试验项目·	电调立感益 由 阻+ 励益+ 亦比	一一次电流: 统制。	D A P	
+ Experiment	CT编号:	0	当前温度:	25 °C	
pc_soft	相别:	Ă	额定频率:	50 Hz	
- CTP-2009	CI/PT编号:	0	最大测试电流:	5 A	
Picture	绕组编号:	151-152	额定一次电流:	200 A	
i Program	试验时间:	1999-12-14 18:52:02	一 数定负荷:	10 VA	
+ Afference			切率四数: 杨定准确阻借系数,	0.80	
mp3			新杰系数K:	10	
+ soft-mbf			Kpcf:	10	
+ Subject					
■ 公司文件					
王 威丁相斤 具近照片	试验结果		(120)332233		
1 東川県方 東 鎌倉心遇ば装置	负荷信息		电阻信息		
F:\	参数名	结果	参数名	结果	
-G:\	立測金荷・	20020	申問[25°C]:	0,1398 8	
-H:\	功率因数:		电阻[75'C]:	0.1672 Ω	
-L:\	阻抗:		- 100 C		
+ dsp >H 00 +C 00 H					
● 近明节图片	一時磁信自				
everest	200441B/S	1			
+ 浙江CTY程序	参数名	结果	参数名	结果	
+ ct_tester	拐点电压(V_Kn):	28.84 V	Ts:	2.299 s	
⊕ CTP_0814	拐点电流(I_Kn):	0.07296 A	变比:	200.0 : 5.0000	
€ ZJZSS2	极限电动势:	28.363 V	电数比:	40 Etaitt /	
● 专利	131: 有会误差 2 31 ·	0.130 %	化住:	-0.1588.%	
CTP-2009.08.14	不怕和由感•	1, 119 H	相位差;	3.417	
ま 10A 会 乾佳思而 (1 20)	利磁系数:	0.648	IN LLCL.	0.11	
CTP-2009 08 14	感应电动势:	?			
CTP-1999 12 14	Is:	?			
SPARTAN-3E	复合误差 8 s:	?			
+ bry10					
- L0G-2009.07.15					

图 21 PC 机操作软件参数界面

⑥ 曲线页

曲线页(图 20)显示励磁曲线、5%误差曲线、10%误差曲线。最多可以显示 6个源文件的6条曲线,由6种不同形状的图标指示,可以方便地进行比较。曲 线中的坐标点是根据源文件中的数值自适应确定的。在绘图有效区域内移动鼠

标,程序会根据 X 轴坐标点自动计算 Y 轴坐标点的数据,显示在右侧对应的图标下。

⑦ 数据页

数据页(图 22)显示励磁、5%误差、10%误差的实测值和取整值。实测值是 直接从文件中读取的,取整值是通过计算将 X 坐标取整得到的数据。取整值可 按一定步长进行取整,还可以双击对取整的数据进行修改,用右键添加和删除。

图 22 PC 机操作软件数据界面

⑧ 变比页

变比界面(图23)显示比差值和相差值数据。某些数据用不同颜色表示以 更加醒目。只能显示数据供用户分析,不能进行修改。

(2) 帮助(E)							
文件夹 文件比较	生成报告 打开报告						
夹	厂全选	参数 曲线 美	波据 变比				
P	文件名 备注	比差值					
i arm_sort	0_A_0_1S1-1				P		
CT-VI		额定电流百分比	Fower/cosΦ			i	
+ Experiment			10.00/0.80	7.50/0.80	5.00/0.80	2.50/1.00	1.00/1.00
- pc_soft CTP-2000		1	-0.14	-0.11	-0.07	-0.00	-0.00
Picture	-	5	-0.18	-0.14	-0.09	-0.02	-0.01
+ Frogram		10	-0.23	-0.17	-0.11	-0.03	-0.02
Favorites mp3		20	-0.20	-0.17	-0.13	-0.06	-0.04
soft-mbf Soft		20	0.20	0.11	0.15	0.00	0.04
+ Subject + 公司文件		50	-0.17	-0.14	-0.11	-0.05	-0.04
● 咸宁相片		100	-0.16	-0.13	-0.10	-0.05	-0.04
 ■ 取加照方 ● 继保仪调试装置 		120	-0.15	-0.13	-0.10	-0.05	-0.04
F:\ G:\							
- H: \							
E L: \		相差值					
Ⅱ 说明书图片		部中中学家小小小			Power/cosΦ		
+ 611c		観定电流日分応	10.00/0.80	7.50/0.80	5.00/0.80	2.50/1.00	1.00/1.00
浙江CTY程序		1	9.02	7,58	6.13	5.06	3.92
+ CTP_0814		5	8.08	7.02	5.84	5.03	3.91
ZJZSS2 detf81		10	6.61	6.13	5.38	4.95	3.87
CTP-2009.08.14		20	5 50	4.99	4.41	1.60	3.73
● PIIA		20	0.09	4. 33	4.41	4.04	5.15
● 401年5年回11.20万 		50	4, 30	3.95	3.59	3.80	3.11
CTP-1999. 12. 14		100	3.42	3.19	2.93	3.22	2.65
SPARTAN-3E		120	3.27	3.00	2.77	3.08	2.54
+ bzv10							

图 23 PC 机操作软件变比界面

2. 生成 WORD 报告

注意:

- 要求 PC 机安装了 OFFICE 2000 或以上版本。
- 软件转换前,请关闭其它已打开的 WORD 文档,以免造成损失。 请勿删除自动生成的"试验报告\"文件夹。

● 软件转换过程中,请不要进行其它操作,否则,可能会造成曲线图形不全。

1) 单个文件分别转换

PC 机操作软件支持同一个文件夹内的一个或多个文件同时转换,此时每个试验文件分被别转换为文件名一致的 WORD 报告。步骤如下:

① 选择文件:用鼠标选择单个文件,按住 ctrl 键可以选择多个试验文件, 或按全选选择所有文件,再点击生成报告,弹出报告设置对话框如图 24。

② 选择需要保存的选项,点击确定,弹出保存文件位置对话框,默认位置

在试验报告文件夹中。

與类型	
○ 单个文件分别转换	
☞ 多个文件合并转换	
7选项	
锦	
▶ 负荷信息	▶ 励磁信息
▶ 电阻信息	▶ 变比信息
7据	
□ 励磁实测值	☑ 励磁取整值
□ 误差5%实测值	☑ 误差5%取整值
□ 误差10%实测值	✔ 误差10%取整值
▶ 比差数据	▶ 相差数据
形	
☞ 励磁图形	▶ 误差5%图形
	▶ 误差10%图形

图 24 单个文件分别转换报告设置界面

 ・ 単个又针分别转换 ・ ・ ・ ・		
C 多个义件合并转换		
保存选项		
「结果 ────	☑ 励磁信息	1
▼ 电阻信息	▶ 変比信息	
▶ 励磁实测值	▶ 励磁取整值	
▶ 误差5%实测值	☑ 误差5%取整值	
▶ 误差10%实测值	✓ 误差10%取整值	
▶ 比差数据	▶ 相差数据	
▶ 励磁图形	☞ 误差5%图形	
	☞ 误差10%图形	

图 25 多个文件合并转换报告设置界面

2) 多个文件合并转换

PC 机操作软件支持同一个文件夹内的多个(最多6个)试验源文件合并转换,此时合并转换为一个 WORD 报告,便于分析和比较。

选择文件:按下文件比较,用鼠标左键选择多个文件(鼠标右键取消选定),选定的文件会在备注栏中标注 A、B、C、a、b、c字母,并在曲线页中显示多条曲线进行比较,如图 26。

图 26 多个文件合并转换时曲线界面

再点击生成报告,弹出报告设置对话框,如图26。

② 选择需要保存的选项,点击确定,弹出保存文件位置对话框,默认位置 在试验报告文件夹中。

附录

A. 低频法测试原理

IEC60044-6标准(对应国家标准GB16847-1977)声称,CT的测试可以在比额定频率低的情况下进行,避免绕组和二次端子承受不能容许的电压。

CT 伏安特性测量的原理电路如下图: CT 一次侧开路,从二次侧施加电压,测量所加电压 V 与输入电流 I 的关系曲线。此曲线近似 CT 的励磁电势 E 与励磁电流 I 的关系曲线。

设 CT 励磁绕组在某一励磁电流 I 时的激磁电感为 L, 激磁阻抗为 Z, 则:

 $V = I \cdot Z$ 电感L与阻抗Z之间具有下述关系: $Z = \omega \cdot L = 2 \pi f L$ 则: V= I · 2 $\pi f L$ 由公式中可见在某一激磁电感L时所加电压V与频率f成正比关系。 假设当f = 50Hz时,为达到励磁电流 Ix,所需施加的电压Vx为 2000V $Vx = Ix \cdot 2 \pi f L = 2000V$,

若施加不同频率:

f = 50Hz, Vx = 2000Vf = 5Hz, $Vx \cong 200V$ f = 0.5Hz, $Vx \cong 20V$

由此可见需要使 CT 进入相同饱和程度,施加较低频率信号所需电压可以大幅度降低这就是变频法的基本原理。

在此必须严格注意,所需电压并非与频率呈线性比例关系,并非随着频率 等比例降低,需要严格按照互感器的精确数学模型进行完整的理论计算。

B. 10%误差曲线计算和应用方法

电流互感器的误差主要是由于励磁电流^I。的存在,它使二次电流^I。与换算 到二次侧后的一次电流^I,不但在数值上不相等,而且相位也不相同,这就造成 了电流互感器的误差。

电流互感器的比值差定义为:

$$\varepsilon = \frac{I_{1}^{'} - I_{2}}{I_{1}^{'}} \times 100 = \frac{I_{0}}{I_{1}^{'}} \times 100$$
(B. 1)

继电保护要求电流互感器的一次电流¹,等于最大短路电流时,其比值差小 于或等于 10%。在比值差等于 10%时,二次电流¹,、与换算到二次侧后的一次 电流¹,以及励磁电流¹。之间满足下述关系:

$$I'_{1} = 10I_{0}$$
 (B. 2)
 $I_{2} = 9I_{0}$ (B. 3)

定义 M 为一次侧最大短路电流倍数, K 为电流互感器的变比, 则有

$$M = \frac{I_{1M}}{I_{1N}} = \frac{K \times I_{1}'}{K \times I_{2N}} = \frac{10I_{0}}{I_{2N}}$$
(B.4)

其中:
$$I_{1M}$$
为一次侧最大短路电流 I_{1N} 为一次侧额定电流 I_{2N} 为一次侧额定电流

10%比值差时,允许的最大负荷阻抗^Z。的计算公式为:

$$Z_{B} = \frac{E_{0}}{I_{2}} - Z_{2} = \frac{E_{0}}{9I_{0}} - Z_{2}$$
(B.5)

式中: Z₂为电流互感器二次绕组阻抗

E₀为电流互感器二次绕组感应电动势, E₀和 I₀的关系由励磁特性曲线描述。

根据上述算式,最后可以得到用最大短路电流倍数M和允许的最大负荷阻 式 Z_B描述的 10%误差曲线。

10%误差曲线的应用方法:

得出某一CT的10%误差曲线后,还必须查阅流经该CT的最大短路电流 I_{MAX} 和该CT二次侧所带回路的阻抗 Z_2 。最大短路电流往往在整定计算时得出,是 该CT所在线路的最大运行方式下最严重短路时的短路电流,最大电流倍数 $I_{1M} = I_{MAX} / I_E$ (额定电流)。二次回路阻抗 Z_2 可以用装置测量得到。 得到 I_{1M} 和 Z_2 后查阅10%误差曲线,若点(I_{1M} , Z_2)在曲线下方,则 满足要求,说明在最严重短路情况下CT的电流变换误差小于10%。否则将大于10%。

C. 用于各种 CT 的实际接线方式

用于 CT 测试的基本接线步骤(参见下图):

- ① 用 4mm²线将测试仪左侧的接地端子连接到保护地。
- ② 连接 CT 一次侧的一个端子和二次侧的一个端子到保护地。

③ 确保 CT 的其他端子全部从输电线上断开,其他绕组全部开路。

④ 用 2.5mm² 红线和黑线将 CT 的二次侧连接到测试仪 "Output" S1 和 S2 插孔,用 1.2mm² 黄线和黑线将 CT 的二次侧连接到测试仪 "Sec"的 S1 和 S2 插 孔,注意两根黑线连在 CT 二次侧已接保护地的同一端子上。

⑤ 用 1. 2mm² 绿线和黑线将 CT 的一次侧连接到测试仪的 "Prim"的 P1 和 P2 端子上, P2 通过黑线与 CT 一次侧连接到保护地的那个端子相连。

⑥ 检查接线无误,开始测试。

图 C.1 典型接线方式

1. 测试仪在三角形接法变压器上进行 CT 测试的接线方式如图 C.2 所示。

图 C.2 测试仪在三角形接法变压器上进行测试时的接线方式 2. 测试仪进行变压器套管 CT 测试时的接线方式如图 C.3 所示。 注意:一次端子 H1 不能接地,否则一次侧都接地了,则仪器不能获取正确结果。

图 C.3 测试仪对变压器上套管 CT 进行测试时的接线方式

3. 测试仪在对 GIS(SF6)开关上的 CT 测试时的接线方式如图 C.4 所示。

注意: 断开与母线连接的所有开关, 合上接地刀闸。

图 C.4 测试仪对 GIS (SF6) 开关上的 CT 测试时的接线方式

D. 四端法接线的测量原理

施加输出一个电压源信号 Vs 到一个阻抗 R 上,将产生一电流 I,如图 D.1。

R = V / I

由于从电压源到被测阻抗有一段导线,导线有电阻 r,导致 V=Vs,所以若要精确测量阻抗 R,不可以简单地用电源电压 Vs 代替 V。

阻抗 R 的测量电路应采用图 D.2 的接线方法,测量电压的电压表必须单独 用导线从 R 两端连线才能精确测量 R 的电压值 V。因 R 两端是采用 4 根导线接线, 故称为 4 端法接线。图 D.3 的接线方法是错误的。

采用测量互感器的电阻、变比、励磁时,需采用4端法接线,如图D.4。

图 D.4

四端法接线必须注意被测绕组的端子接法。图 D.5 的接法是正确接法,图

D.6、7均是错误接法。

图 D.5

图 D.6

图 D.7

七、售后服务

凡购买本公司产品的用户均享受以下的售后服务:

◆ 仪表自售出之日起一个月内,如有质量问题,我公司免费更换新表,但用户 不能自行拆机。属用户使用不当(如错插电源、进水、外观机械性损伤)的

情况不在此范围。

- ◆ 仪表一年内凡质量问题由我公司免费维修。
- ◆ 仪表自售出之日起超过一年时,我公司负责长期维修,适当收取材料费。
- ◆ 若仪表出现故障,应请专职维修人员或寄回本公司修理,不得自行拆开仪表, 否则造成的损失我公司不负责任。

