ZX3030X 三相谐波标准源

注意事项

- ◆ 电压、电流正在输出时请不要关机,特别是当高电压、大电流正在输出时,请先通过软件关闭源输出,然后再关闭仪器电源;
- ◆ 电压输出不得短路,电流输出不得开路;操作者启动输出电压、电流源 之前应保证正确的外部连线,连线部分不能裸露,暂时离开时请关闭源 输出;
- ◆ 在本设备与其它设备联机通讯前应断开所有设备电源,然后再连接通信线。带电连接可能会对设备造成损坏;
- ◆ 输出端子不能作为输入用途;
- ◆ 使用本设备时,请务必保证设备接地良好,否则指标可能会受影响;
- ◆ 在测量或校验前,最好将设备预热 30 分钟;
- ◆ 未经本公司允许,请不要打开此精密仪器,内有高压;
- ◆ 仪器使用请严格按照说明书要求操作,如仪器出现故障请与我公司售后 服务部门联系: 027-87755828;
- ◆ 发机用的包装铝箱、纸箱及珍珠棉等请用户妥善保管,以备后用!
- ◆ 因仪器持续技术升级,说明书请以最新版本为准,仪器在实际试用过程 当中可能略有差别,具体可以仪器为准,由此为您带来不便还望客户谅 解,我们将竭诚为您提供最优质的产品和服务。
- ◆ 在实际使用过程当中,请严格按照电气产品操作规程及本说明书首页所示注意事项进行,以避免误操作导致仪器故障或损坏仪器给您工作带来不便。

目 录

<i>一</i> `,	产品概述
<u> </u>	主要特点
三、	技术指标
1	交流电压输出
2	交流电流输出
3	功率输出
4	相位
5	功率因数
6	频率
7	电压电流谐波设置
8	电压电流间谐波设置
9	闪变参数设置
1	0 骤升/骤降参数设置8
1	1 环境条件
12	2 工作电源
13	3 外观尺寸8
14	4 重量

四、	面板说明)
1	前面板说明)
2	后面板说明	2
五、	操作说明	2
1	开机界面介绍 ····································	2
2	标准源视窗	3
2.	1 交流标准源参数操作 ·······1	6
2.	2 直流标准源参数操作	28
3	电工试验视窗	29
3.	1 谐波试验	30
3.	2 间谐波试验	31
3.	3 闪变和骤升/骤降试验	32
4	参数设置视窗	34
5	系统校准视窗	36
六、	装箱清单	38

一、产品概述

ZX3030X 三相谐波标准源是根据国家电力行业相关标准及国家电网公司对电力谐波的技术要求,系统分析国内外对电测技术及电能谐波的研究水准,结合国内的实际需要研制而成。此产品适用于国内外市场。

本仪器采用高速交流采样、高精度 DDS 波形合成、高速数字信号处理器(DSP)、复杂可编程逻辑阵列(CPLD)、大功率集成功放、嵌入式计算机系统等技术设计而成。适用于电能质量表、多功能数显表、RTU 交流采样、变送器、电能表、指示仪表的检定和校验,是电力系统用于电力产品检定和校准的理想设备。

本产品适用于电力、能源、铁路、石油化工及各科研单位等。

- 二、主要特点
- 国办首创将系统、测试和信号产生集成在一个模块上,产品集成度高, 故障率低,体积小,重量轻,响应速度快,效率高,可靠性高,功能强, 输出功率大,标准源输出。
- ▶ 可自动检定各种电能质量表、多功能数显表、电能表和指示仪表的各项 指标。
- 输出交直流电压、电流、相位和功率均为高精度、高稳定度标准源,软件校准。各项输出均采用动态负载自动调整技术,降低了负载调整率。
- 交流标准源输出频率可以 0.0001Hz 细度任意调节。三相电压之间、三相电流之间、各相电压和电流之间可以 0.001° 细度任意移相,同时也可模拟各种电力故障输出。
- ▶ 可输出 2[~]60 次标准调制谐波,可进行单次或任意多次谐波叠加输出。

- ▶ 可输出 1.1²20.0 次标准间谐波,可进行单次或任意多次间谐波叠加输出。(选件)
- ▶ 可输出调制频率为[0.0001Hz, 40.0000Hz]的标准(矩形波调制、正弦 波调制)闪变信号,并计算出符合 GB12326-2000 标准的标准 Pst 值。(选 件)
- ▶ 可进行骤升/骤降试验,骤升/骤降幅度及宽度可任意设置。(选件)
- ➤ 采用大屏幕800*600 TFT 真彩LCD结合友好的图形化中文视窗界面显示, 鼠标,键盘及面板按键操作简单、方便、直观,无需专门培训。
- ▶ 带全拼汉字输入系统,可根据客户要求任意增加汉字联想输入。
- ▶ 设计有大容量的FLASH ROM, 可存贮检定结果数据和将数据传输到上层计算机。
- ▶ 电压、电流、功率、相位设有常用试验点,操作简单,一键到位,使用 便捷,效率高。
- ▶ 备有数字旋转编码器,方便参数进行各种细度调节。
- 采用超大规模 CPLD 芯片设计自己的专用 IC 使电路简化并提高了可靠 性。
- 备有多重报警和保护功能,故障自行检测,可准确显示出故障类型和部位,使用安全可靠。
- 备有多种通信接口,通信协议开放,用户可自行编程控制仪器进行二次 开发。
- 三、技术指标
- 1、交流电压输出

- 量 限: 380V、220V、100V、57.735V(系列)
- 调节范围: (0-120)%RG RG 为量限,下同
- 调节细度: 0.001%RG
- 准确度: 0.05%RG
- 稳 定 度: ≤0.02%/2min
- 失 真 度: ≤0.05% (非容性负载);
- 输出负载:每相 20VA/25VA/30VA(可选)
- 负载调整率: 0.02%
- 2、交流电流输出
 - 量 限: 20A、5A、2A、1A
 - 调节范围: (0~120)%RG RG 为量限,下同
 - 调节细度: 0.001%RG
 - 准确度: 0.05%RG
 - 稳 定 度: ≤0.02%/2min
 - 失 真 度: ≤0.05% (非容性负载)
 - 输出负载:每相 20VA/25VA/30VA(可选)
 - 负载调整率: 0.02%
- 3、功率输出
 - 准确度: 0.05%RG;
 - 稳定度: 0.02%RG/2min
- 4、相位

调节范围: 0°~359.999°

分辨率: 0.01°

准确度: 0.05°

- 5、功率因数
 - 调节范围: -1~0~+1
 - 分辨率: 0.01
 - 准确度: 0.05%RG
- 6、频率
 - 调节范围: 30Hz~70Hz
 - 分辨率: 0.01Hz
 - 准确度: 0.05Hz
- 7、电压电流谐波设置
 - 谐波次数: 2~60次
 - 总谐波含量: 0~40.00%
 - 谐波相位: 0°~359.9°
 - 谐波设置准确度: (10%±0.1%) RD, RD 为设置的谐波含量
- 8、电压电流间谐波设置
 - 谐波次数: 1.1~20.0次
 - 分辨率: 0.1次
 - 总谐波含量: 0~40.00%
 - 谐波相位: 0°~359.999°
 - 谐波设置准确度:(10%±0.1%)RD,RD为设置的谐波含量
- 9、闪变参数设置

调 制 波: 矩形波/正弦波可选

电压变动: (0~10.000)%Un

调制频率: 方波调制: 0.0233Hz~40.0000Hz

正弦调制: 0.0001Hz~40.0000Hz

Pst 准确度: 5% (IEC868)

10、骤升/骤降参数设置

电压升/降幅度: (0~10.000)%Un

- t1: 1.000mS~42949.672mS
- t2: 1.000mS~42949.672mS
- t3: 1.000mS~42949.672mS
- 11、环境条件
 - 工作温度: 0℃~40℃

相对湿度: ≤85%

储存条件: -30℃~60℃

- 12、工作电源: AC220V±15%
- 13、外观尺寸: 440mm X 177mm X 370mm
- 14、重 量: 15Kg

四、面板说明

1、前面板说明

图1 前面板

- ① 800*600TFT 真彩 LCD
- ② 带开关旋转编码器,可用于对输出量进行调节,或用于参数选择
- ③ 功能键、数字键、控制键区

【URANGE】: 电压量限切换键

【IRANGE】: 电流量切换限键

【△/Y】: △/Y 接线方式切换键

【0-9】: 数字键

【F1】、【F2】、【F3】: 功能键

【SET】:参数设置键

【OFF】: 关闭标准源输出键

【Back Space】: 退格键

【←】、【↑】、【→】、【↓】: 上、下、左、右方向键

【Enter】: 确认键

【ESC】: 退出键

【U】: 电压参数键

【1】: 电流参数键

【P】: 有功功率参数键

【Q】: 无功功率参数键

【F】: 频率参数键

【 • 】: 相位参数键

【A】、【B】、【C】: 相序指示键

④ 试验点键区,都为快捷键,按下后直接产生相关功能

【0.0L】、【0.5L】、【0.8L】、【1.0】、【0.5C】、【0.8C】、【0.0C】按 键为 COS φ 试验点快捷键

【120%】、【110%】、【100%】、【90%】、【80%】、【70%】、【60%】、【50%】、 【40%】、【30%】、【20%】、【10%】、【5%】、【0%】为U、I百分比试验 点快捷键

⑤ 直流电压源输出端子

⑥ 直流电流源输出端子

⑦ 交流电流源输出端子,黄、绿、红色端子分别为A相、B相、C相 电流输出的正端;黑色端子分别为A相、B相、C相电流输出的负端。

⑧ 交流电压源输出端子,黄、绿、红色端子分别为A相、B相、C相 电压输出正端,黑色端子 Un 为公共端

⑨ 有功电能脉冲输入插座

- 10 无功电能脉冲输入插座
- ① 标准 PC 键盘接口 (PS2)
- ① 鼠标接口(PS2)

(因产品持续技术更新,具体可以实际产品为准,接口不变) 注意:

- ◆ 输出直流电流源时,请务必将三相交流电流源处于开路状态。
- ◆ 直流电压输出接线方式:直流电压输出采用四线输出方式。在输出低电压、接大电流负载或用较长输出引线时,为了消除或减小引线电阻的影响,建议用户采用图3所示的四线输出方式,V0+、V0−的接入起着反馈补偿的作用;在输出电压较高时也可采用图3所示的两线输出方式。

2、后面板说明

图 3 后面板

- ① 交流 220V 风扇
- ② 标准 RS-232 9 针插座
- ③ 3芯脉冲输出插座
- ④ 交流 220V 电源三芯插座(带 5A 保险)
- ⑤ 交流 220V 电源开关

注: (因产品持续技术升级,面板请以实际产品为准)

- 五、操作说明
- 1、主操作界面介绍
- 开机后 LCD 屏幕即刻出现开机界面一般情况下,您所使用的软件版本越高,那么您所使用的软件功能也就越新。与其它带工控机的标准源有很大不同的是我们的机器没有开机时操作系统的引导过程,也就是说我们没有开机等待引导操作系统的烦恼!因为我们拥有自己的 tinyGUI 视窗操作技术。
- ▶ 经过5秒钟后开机画面消失,出现如下图4所示主视窗界面。
- ▶ 主视窗是主控平台,通过操作鼠标、键盘、面板按键可选择进入不同的

功能视窗。操作键盘上的方向键或用鼠标选择视窗中的各功能按钮,再 按回车键或单击鼠标左键可激活该按钮。以上操作在下文中简称"按下 ××按钮"。

按下〖标准源〗按钮或【5】键,将进入交直流标准源输出视窗。

按下〖电工试验〗按钮或【6】键,将进入电工试验视窗。

按下〖参数设置〗 按钮或【7】键,将进入系统参数设置视窗。

按下〖系统校准〗按钮或【8】键,在输入正确的密码后将进入交直流 标准源校准视窗。

按下〖变送器检定〗按钮或【1】键,将进入变送器检定视窗。

按下〖仪表检定〗按钮或【2】键,将进入仪表检定视窗。

图4 主视窗

按下〖电能表检定〗按钮或【3】键,将进入电能表检定视窗。

按下〖RTU 检定〗按钮或【4】键,将进入 RTU 检定视窗。

2、标准源视窗

- 对于大多数开发/测试人员来说,图5所示的标准源视窗是个不错的操作平台。该界面为用户的开发/测试提供了灵活的交直流标准源的各项参数测试操作。
- 本视窗提供了交/直流两种状态,在源处于未输出状态时通过〖交直流〗 单选按钮可方便进行状态切换。状态切换后,未使用参数将处于无效状态。
- ▶ 在标准源视窗界面, PC 键盘上的功能按键另定义如下:
 - 【F4】键被定义为【URANGE】键;
 - 【F5】键被定义为【IRANGE】键;
 - 【F6】键被定义为【 Δ /Y】键;
 - 【F7】键被定义为【SET】键;
 - 【F8】键被定义为【OFF】键;
 - 【F9】键被定义为【Φ】键;
 - 【F10】键被定义为【100%】键;
 - 【F11】键被定义为【20%】键;
 - 【F12】键被定义为【50%】键;

交直流	标准源窗体									
-				_	• 3	- 交直注 2流 (^充 ` 直流			
幅度	A相	B相	C相			直流源」 DOV ← DOV ←	量限 — 25A 5A			
电压电流	100.000 5.00000	100.000 5.00000	100.000 5.00000	V mA	C 19 C 79	50V C	1A 200mA			
相位	A相	B相	C相				20mA 10mA			
电流	0.000	120.000	240.000	•	<u>с</u> (vmc	IMA	K		
功率	A相	B相	C相	2	Σ	e	-	s - 1		
有功	500.000	500.000	500.000	1500.	000	W	۲			
无功	0.000	0.000	0.000	0.00	0	Var	٢	C PE		佐 冈 - +
视在	500.000	500.000	500.000	1500.	000	VA	٢	• 区	里图	
cosΦ	1.00000	1.00000	1.00000	1.00	000				直流表 ○ 10V	直流 20.00012)
频率	50.0000	Hz 有功日	电能误差 0.	01	% 无7	为电能	吴差	%	C 5V C 10m/ C 2.5V C 5mA C 0.5V C 1mA	纹波[
电压	量限 100V林	当 🝷 接线	源理 三相	四线	• I	I试验点	ŧ 100%	•		
电流	量限 5A档	 ● 徒 	3脸点 1.0		•	试验点	ŧ 100%	•	源输出(F1)	返回

图 5 交直流标准源视窗

视窗中左上角的较大编辑框在后面的描述中被称做面板按键编辑器或 按键编辑器。该面板按键编辑器为用户提供了功能非常强大的交/直源参数 的按键编辑功能,通过对【U】、【I】、【P】、【Q】、【Φ】、【F】、【A】、【B】、【C】 以及【120%】、【110%】、【100%】、【90%】、【80%】、【70%】、【60%】、【50%】、【40%】、 【30%】、【20%】、【110%】、【5%】、【0%】百分比按键进行组合,用户可灵活地 对所感兴趣的参数进行设置、修改、编辑,且与源输出状态无关。很快你 就会喜欢上该功能!

视窗中右上角为图形显示窗,可对交流矢量图进行显示;未来升级版 可显示交流波形图等。320*320 的图形显示窗方便了你对相位的直观观察。 图形显示窗仅在交流标准源状态时有用,在直流标准源状态时无效。图形 显示窗有效时,当交流源处于关闭状态,显示的是接线矢量示意图,当交 流源处于输出状态状态时,显示的是实际测量的交流源矢量图。

在标准源视窗,【↑】、【↓】按键与编码器旋钮功能类似----可对按键

编辑器中的被调节参数进行升/降调节;当源处于关闭状态,也可进行参数选择,此时相当于视窗操作界面中的 TAB 功能。

红色 LED 用于指示源输出状态:红色 LED 闪烁指示源已处于输出状态; 红色 LED 不亮指示源处于关闭状态。

在标准源关闭状态,按下〖源输出〗按钮或【F1】按键,将打开并输 出标准源,同时〖源输出〗按钮变为〖源停止〗按钮。在标准源输出状态, 按下〖源停止〗按钮或【F1】键,将关闭并停止标准源输出。

在标准源关闭状态,操作〖返回〗按钮或【ESC】键将退出标准源视窗。 2.1 交流标准源参数操作

当用鼠标选中〖交直流〗单选按钮的〖交流〗选项时,标准源视窗将处于交流标准源状态。

在交流标准源输出前可以对交流标准源的各项参数(电压、电流、相位、频率等)进行设置;设置完毕,按下〖源输出〗按钮或【F1】键,ZX3030X 将输出所设定的标准交流信号。

对于参数的设置与修改可以通过多种方式,既通过视窗中的编辑框、 组合框进行设置,也可通过面板按键编辑器进行设置。具体说明如下: ☞ 量限选择:在确定好欲输出的电压、电流幅度前,应选择好一个与欲输 出的电压、电流幅度最接近的电压、电流量限,这可保证您获得最佳指标 信号;使用鼠标操作〖电压量限〗及〖电流量限〗组合框或者使用面板 【URANGE】按键和【IRANGE】按键,可方便对电压、电流量限进行选择。

一旦标准源处于输出状态,量限选择将被禁止!

☞ 幅度设置:确定好电压、电流量限后,可在源关闭时通过幅度编辑框对

A 相、B 相、C 相的电压、电流幅度进行设置,幅度范围是(0-120)%RG, 超过范围将显示图 6 所示消息框。

图 6 数据非法提示消息框

另一种方式可以使用鼠标对〖U试验点〗组合框和〖I试验点〗组合框进行 操作,选择其中一种量限百分比将电压、电流同时进行输出。

当然可以更为方便地通过面板按键编辑器进行操作:

【U】【Enter】调节交流电压源幅度,按键编辑器显示为U=×××.×××V; 该操作将使Ua=Ub=Uc或Uab=Ucb。如果交流电压源处于关闭状态,则打开 并输出交流电压源。光标指示当前欲调节细度。按【←】键可左移光标, 按【→】键可右移光标。确定好调节细度后旋转编码器可同时对Ua、Ub、 Uc或Uab、Ucb幅度进行升/降调节。

【U】【A】【Enter】调节 Ua 或 Uab 幅度,按键编辑器显示为 Ua=×××.× ××V;如果 Ua 或 Uab 处于关闭状态,则打开并输出 Ua 或 Uab。光标指示 当前欲调节细度。按【←】键可左移光标,按【→】键可右移光标。确定 好调节细度后旋转编码器可对 Ua 或 Uab 幅度进行升/降调节。

【U】【B】【Enter】调节Ub幅度,3相4线时有效,操作同【U】【A】【Enter】。【U】【C】【Enter】调节Uc或Ucb幅度,操作同【U】【A】【Enter】。

【I】【Enter】调节交流电流源幅度,按键编辑器显示为 I=×.×××××A; 该操作将使 Ia=Ib=Ic 或 Iab=Icb 。如果交流电流源处于关闭状态,则打开

并输出交流电流源。光标指示当前欲调节细度,按【←】键可左移光标,按【→】键可右移光标。确定好调节细度后旋转编码器可同时对 Ia、Ib、Ic 或 Iab、Icb 幅度进行升/降调节。

【I】【A】【Enter】调节 Ia 或 Iab 幅度,按键编辑器显示为 Ia=×.××× ××A;如果 Ia 或 Iab 处于关闭状态,则打开并输出 Ia 或 Iab。光标指示 当前欲调节细度,按【←】键可左移光标,按【→】键可右移光标。确定 好调节细度后旋转编码器可对 Ia 或 Iab 幅度进行升/降调节。

【I】【B】【Enter】调节 Ib 幅度,3 相4线时有效,操作同【I】【A】【Enter】。

【I】【C】【Enter】调节 Ic 或 Icb 幅度,操作同【I】【A】【Enter】。

【数字】【U】【Enter】同时设置交流电压源幅度,使Ua=Ub=Uc=【数字】或 Uab= Ucb=【数字】,如果交流电压源处于关闭状态,则打开并输出交流电 压源;若交流电压源已处于源输出状态,则Ua、Ub、Uc或Uab、Ucb同时 被输出到设定幅度;之后,按键编辑器进入【U】【Enter】状态。

【数字】【U】【A】【Enter】设置 Ua 或 Uab 幅度, 使 Ua=【数字】或 Uab=【数字】, 如果 Ua 或 Uab 处于关闭状态,则打开并输出 Ua 或 Uab; 若 Ua 或 Uab 已处于源输出状态,则 Ua 或 Uab 被输出到设定幅度; 之后,按键编辑器进入【U】【A】【Enter】状态。

【数字】【U】【B】【Enter】设置 Ub 幅度,3相4线时有效。操作同【数字】 【U】【A】【Enter】。之后,按键编辑器进入【U】【B】【Enter】状态。

【数字】【U】【C】【Enter】设置 Uc 或 Ucb 幅度,操作同【数字】【U】【A】 【Enter】 。之后,按键编辑器进入【U】【C】【Enter】状态 。

【数字】【I】【Enter】同时设置交流电流源幅度,使 Ia=Ib=Ic=【数字】或

Iab= Icb=【数字】,如果交流电流源处于关闭状态,则打开并输出交流电流源;若交流电流源已处于源输出状态,则Ia、Ib、Ic或Iab、Icb同时被输出到设定幅度;之后,按键编辑器进入【I】【Enter】状态。

【数字】【I】【A】【Enter】设置 Ia 或 Iab 幅度, 使 Ia=【数字】或 Iab=【数字】, 如果 Ia 或 Iab 处于关闭状态,则打开并输出 Ia 或 Iab; 若 Ia 或 Iab 已处于源输出状态,则 Ia 或 Iab 被输出到设定幅度; 之后,按键编辑器进入【I】【A】【Enter】状态。

【数字】【I】【B】【Enter】设置 Ib 幅度,3相4线时有效。操作同【数字】
【I】【A】【Enter】。之后,按键编辑器进入【I】【B】【Enter】状态。
【数字】【I】【C】【Enter】设置 Ic 或 Icb 幅度,操作同【数字】【I】【A】
【Enter】。之后,按键编辑器进入【I】【C】【Enter】状态。

【U】【百分比键】 百分比输出电压源幅度,将Ua、Ub、Uc或Uab、Ucb幅 度同时按指定的量限百分比输出,即Ua=Ub=Uc=量限百分比或Uab=Ucb=量 限百分比,如果交流电压源处于关闭状态,则打开并输出交流电压源;若 交流电压源已处于源输出状态,则Ua、Ub、Uc或Uab、Ucb幅度同时被输 出到指定的量限百分比;之后,按键编辑器进入【U】【Enter】状态。

【U】【A】【百分比键】 百分比输出 Ua 幅度,将 Ua 或 Uab 按指定的量限百分比输出,即 Ua=量限百分比或 Uab=量限百分比,如果 Ua 或 Uab 处于关闭状态,则打开并输出 Ua 或 Uab;若 Ua 或 Uab 已处于源输出状态,则 Ua 或 Uab 幅度被输出到指定的量限百分比;之后,按键编辑器进入【U】【A】【Enter】状态。

【U】【B】【百分比键】 百分比输出 Ub 幅度,3相4线时有效,操作同【U】

【A】【百分比键】;之后,按键编辑器进入【U】【B】【Enter】状态。

【U】【C】【百分比键】 百分比输出 Uc 或 Ucb 幅度,操作同【U】【A】【百分比键】; 之后,按键编辑器进入【U】【C】【Enter】状态。

【I】【百分比键】 百分比输出电流源幅度,将 Ia、Ib、Ic 或 Iab、Icb 幅 度同时按指定的量限百分比输出,即 Ia=Ib=Ic=量限百分比或 Iab= Icb=量 限百分比,如果交流电流源处于关闭状态,则打开并输出交流电流源;若 交流电流源已处于源输出状态,则 Ia、Ib、Ic 或 Iab、Icb 幅度同时被输 出到指定的量限百分比;之后,按键编辑器进入【I】【Enter】状态。

【I】【A】【百分比键】 百分比输出 Ia 或 Iab 幅度,将 Ia 或 Iab 幅度按指定的量限百分比输出,即 Ia=量限百分比或 Iab=量限百分比,如果 Ia 或 Iab 处于关闭状态,则打开并输出 Ia 或 Iab;若 Ia 或 Iab 已处于源输出状态,则 Ia 或 Iab 幅度被输出到指定的量限百分比;之后,按键编辑器进入【I】 【A】【Enter】状态。

【I】【B】【百分比键】 百分比输出 Ib 幅度,3相4线时有效,操作同【I】 【A】【百分比键】;之后,按键编辑器进入【I】【B】【Enter】状态。

【I】【C】【百分比键】 百分比输出 Ic 或 Icb 幅度,操作同【I】【A】【百 分比键】;之后,按键编辑器进入【I】【C】【Enter】状态。

【百分比键】百分比输出电压、电流源幅度。如果交流电压、电流源处于 关闭状态,则打开并输出交流电压、电流源;若交流源已处于源输出状态, 则交流源幅度同时被输出到指定的量限百分比。

☞ 相位设置:除 Ua 或 Uab 相位固定不可修改外,其余 Ub、Uc、Ia、Ib、 Ic 或 Ucb、Iab、Icb 相位可在源关闭状态通过相位编辑框进行设置,合法

的相位数据范围是 0°~ 359.999°。超出该数据范围将会弹出图 7 所示消息框。

图 7 相位非法提示消息框

也可通过面板按键编辑器进行相位设置:

【Φ】【Enter】对 Ua-Ia、Ub-Ib、Uc-Ic 或 Uab-Iab、Ucb-Icb 之间的相位 夹角同时进行调节。按键编辑器显示为Φ=×××.×××°; 调节时,将使 所有相的电流与电压之间的相位夹角相等,而电压与电压之间的相位夹角 不变。若交流源处于关闭状态,则打开并输出交流源,源幅度为量限幅度。 光标指示当前欲调节细度,按【←】键可左移光标,按【→】键可右移光 标。确定好调节细度后旋转编码器可同时对 Ua-Ia、Ub-Ib、Uc-Ic 或 Uab-Iab、 Ucb-Icb 之间的相位夹角进行升/降调节。

【Φ】【A】【Enter】对 Ua-Ia 或 Uab-Iab 之间的相位夹角进行调节。按键 编辑器显示为Φa =×××·××°; 若 A 相交流源处于关闭状态,则打 开并输出 A 相交流源,源幅度为量限幅度;光标指示当前欲调节细度。按 【←】键可左移光标,按【→】键可右移光标。确定好调节细度后旋转编 码器可对∠Ua-Ia 或∠Uab-Iab 之间的相位夹角(电流相位)进行升/降调节, 而电压相位不变。

【Φ】【B】【Enter】对∠Ub-Ib之间的相位夹角进行调节。3相4线时有效。 操作同【Φ】【A】【Enter】。

【Φ】【C】【Enter】对∠Uc-Ic 或∠Ucb-Icb 之间的相位夹角进行调节。 操作同【Φ】【A】【Enter】。

【数字】【Φ】【Enter】同时设置 Ua-Ia、Ub-Ib、Uc-Ic 或 Uab-Iab、Ucb-Icb 之间的相位夹角,使∠Ua-Ia=∠Ub-Ib=∠Uc-Ic=【数字】或∠Uab-Iab=∠ Ucb-Icb=【数字】,电压与电压之间的相位夹角不变。如果交流源处于关 闭状态,则打开并输出交流源,幅度为量限幅度;若交流源已处于源输出 状态,则仅按设置角度输出相位信号。之后,按键编辑器进入【Φ】【Enter】 状态。

【数字】【Φ】【A】【Enter】设置 Ua-Ia 或 Uab-Iab 之间的相位夹角, 使∠ Ua-Ia=【数字】或∠Uab-Iab=【数字】, 电压的相位不变。若 A 相交流源 处于关闭状态,则打开并输出 A 相交流源,源幅度为量限幅度;若已处于 源输出状态,则仅按设置角度输出相位信号。之后,按键编辑器进入【Φ】 【A】【Enter】状态 。

【数字】【Φ】【B】【Enter】设置 Ub-Ib 之间的相位夹角。3 相4线有效。 操作同【数字】【Φ】【A】【Enter】。之后,按键编辑器进入【Φ】【B】【Enter】 状态 。

【数字】【 \$\\$ \$\{C} \$\{Enter} \$\} \$\{C} \$\{Enter} \$\] \$\{C} \$\{Enter} \$\] \$\{C} \$\{C} \$\{Enter} \$\] \$\{C} \$\{C} \$\{C} \$\{Enter} \$\] \$\{C} \$\{C} \$\{C} \$\{Enter} \$\] \$\{C} \$\{Enter} \$\{C} \$\{C} \$\{Enter} \$\{Enter} \$\} \$\{C} \$\{Enter} \$\{Enter} \$\{Enter} \$\} \$\} \$\{C} \$\{Enter} \$\{Enter} \$\{Enter} \$\{Enter} \$\} \$\{Enter} \$\{Enter} \$\{Enter} \$\{Enter} \$\} \$\} \$\{Enter} \$\{Enter} \$\} \$\{Enter} \$\{Enter} \$\} \$\] \$\{Enter} \$\{Enter} \$\{Enter} \$\{Enter} \$\} \$\{Enter} \$\{Enter} \$\{Enter} \$\} \$\{Enter} \$\{Enter} \$\{Enter} \$\{Enter} \$\} \$\{Enter} \$\{Enter} \$\{Enter} \$\{Enter} \$\{Enter} \$\} \$\{Enter} \$\{Enter} \$\{Enter} \$\{Enter} \$\} \$\{Enter} \$\{Enter} \$\{Enter} \$\{Enter} \$\{Enter} \$\} \$\{Enter} \$\{Enter} \$\} \$\{Enter} \$\{Enter} \$\{Enter} \$\{Enter} \$\} \$\{Enter} \$\{Enter} \$\{Enter} \$\} \$\{Enter} \$\{Ente

☞ 频率设置:在源关闭状态可通过频率编辑框设置频率。频率设置范围是 30Hz~70Hz,分辨率为0.0001Hz 。超出范围将会弹出图8所示消息框。

图 8 频率超限提示消息框

也可通过面板按键编辑器进行频率设置:

【F】【Enter】对交流源的频率信号进行调节。按键编辑器显示为F=××. ××××Hz;若交流源处于关闭状态,则打开并输出交流源,源幅度为量 限幅度。光标指示当前欲调节细度,按【←】键可左移光标,按【→】键 可右移光标。确定好调节细度后旋转编码器可对频率信号进行升/降调节。 【数字】【F】【Enter】设置交流源的输出频率值。若交流源处于关闭状态, 则打开并输出交流源,源幅度为量限幅度。若交流源已处于源输出状态, 则仅按设置数据输出频率信号。之后,按键编辑器进入【F】【Enter】状态。 ☞ 功率因数设置:在源输出状态通过按键编辑器可对交流源的功率因数 进行设置。

【P】【F】【Enter】对总功率因数进行调节。按键编辑器显示为 PF=×.×× ×××;若交流源处于关闭状态,则打开并输出交流源,源幅度为量限幅 度。光标指示当前欲调节细度,按【←】键可左移光标,按【→】键可右 移光标。确定好调节细度后旋转编码器可对总功率因数进行升/降调节。

【P】【F】【A】【Enter】对 A 相功率因数进行调节。按键编辑器显示为 PFa= ×.×××××; 若 A 相交流源处于关闭状态,则打开并输出 A 相交流源, 源幅度为量限幅度。光标指示当前欲调节细度,按【←】键可左移光标, 按【→】键可右移光标。确定好调节细度后旋转编码器可对 A 相功率因数

进行升/降调节。

【P】【F】【B】【Enter】对B相功率因数进行调节。3相4线时有效。操作同【P】【F】【A】【Enter】。

【P】【F】【C】【Enter】对C相功率因数进行调节。操作同【P】【F】【A】 【Enter】。

【数字】【P】【F】【Enter】设置总功率因数。若交流源处于关闭状态,则 打开并输出交流源,源幅度为量限幅度。若交流源已处于源输出状态,则 仅按设置数据输出总功率因数。之后,按键编辑器进入【P】【F】【Enter】 状态。

【数字】【P】【F】【A】【Enter】设置A相功率因数。若A相交流源处于关闭状态,则打开并输出A相交流源,源幅度为量限幅度。若A相交流源已处于源输出状态,则仅按设置数据输出A相功率因数。之后,按键编辑器进入【P】【F】【A】【Enter】状态。

【数字】【P】【F】【B】【Enter】设置B相功率因数。3相4线时有效。操作同【数字】【P】【F】【A】【Enter】。之后,按键编辑器进入【P】【F】【B】 【Enter】状态。

【数字】【P】【F】【C】【Enter】设置 C 相功率因数。操作同【数字】【P】 【F】【A】【Enter】。之后,按键编辑器进入【P】【F】【C】【Enter】状态。 ☞ 有功功率设置:在源输出状态通过按键编辑器可对交流源的有功功率 进行设置。

【P】【Enter】对总有功功率进行调节。按键编辑器显示为∑P=××××. ×××W; 若交流源处于关闭状态,则打开并输出交流源,幅度平衡输出,

即 Ua=Ub=Uc 或 Uab=Ucb, Ia=Ib=Ic 或 Iab=Icb。光标指示当前欲调节细度, 按【←】键可左移光标,按【→】键可右移光标。确定好调节细度后旋转 编码器可对总有功功率进行升/降调节。

【P】【A】【Enter】对A相有功功率进行调节。按键编辑器显示为Pa=×× ×.×××W; 若A相交流源处于关闭状态,则打开并输出A相交流源。光 标指示当前欲调节细度,按【←】键可左移光标,按【→】键可右移光标。 确定好调节细度后旋转编码器可对A相有功功率进行升/降调节。

【P】【B】【Enter】对 B 相有功功率进行调节。3 相 4 线时有效。操作同【P】 【A】【Enter】。

【P】【C】【Enter】对C相有功功率进行调节。操作同【P】【A】【Enter】。 【数字】【P】【Enter】设置总有功功率。若交流源处于关闭状态,则打开 并输出交流源,幅度平衡输出,即Ua=Ub=Uc或Uab=Ucb,Ia=Ib=Ic或 Iab=Icb。若交流源已处于源输出状态,则仅按设置数据输出总有功功率。 之后,按键编辑器进入【P】【Enter】状态。

【数字】【P】【A】【Enter】设置A相有功功率。若A相交流源处于关闭状态,则打开并输出A相交流源。若A相交流源已处于源输出状态,则仅按设置数据输出A相有功功率。之后,按键编辑器进入【P】【A】【Enter】状态。

【数字】【P】【B】【Enter】设置 B 相有功功率。3 相 4 线时有效。操作同 【数字】【P】【A】【Enter】。之后,按键编辑器进入【P】【B】【Enter】状态。

【数字】【P】【C】【Enter】设置 C相有功功率。操作同【数字】【P】【A】【Enter】。

之后,按键编辑器进入【P】【C】【Enter】状态。

☞ 无功功率设置:在源输出状态通过按键编辑器可对交流源的无功功率 进行设置。

【Q】【Enter】对总无功功率进行调节。按键编辑器显示为∑Q=×××××. ×××Var;若交流源处于关闭状态,则打开并输出交流源,幅度平衡输出, 即 Ua=Ub=Uc 或 Uab=Ucb, Ia=Ib=Ic 或 Iab=Icb。光标指示当前欲调节细度, 按【←】键可左移光标,按【→】键可右移光标。确定好调节细度后旋转 编码器可对总无功功率进行升/降调节。

【Q】【A】【Enter】对A相无功功率进行调节。按键编辑器显示为Qa=×× ×.×××Var; 若A相交流源处于关闭状态,则打开并输出A相交流源。 光标指示当前欲调节细度,按【←】键可左移光标,按【→】键可右移光 标。确定好调节细度后旋转编码器可对A相无功功率进行升/降调节。

【Q】【B】【Enter】对 B 相无功功率进行调节。3 相 4 线时有效。操作同【Q】 【A】【Enter】。

【Q】【C】【Enter】对C相无功功率进行调节。操作同【Q】【A】【Enter】。 【数字】【Q】【Enter】设置总无功功率。若交流源处于关闭状态,则打开 并输出交流源,幅度平衡输出,即Ua=Ub=Uc或Uab=Ucb,Ia=Ib=Ic或 Iab=Icb。若交流源已处于源输出状态,则仅按设置数据输出总无功功率。 之后,按键编辑器进入【Q】【Enter】状态。

【数字】【Q】【A】【Enter】设置A相无功功率。若A相交流源处于关闭状态,则打开并输出A相交流源。若A相交流源已处于源输出状态,则仅按设置数据输出A相无功功率。之后,按键编辑器进入【Q】【A】【Enter】状

态。

【数字】【Q】【B】【Enter】设置B相无功功率。3相4线时有效。操作同 【数字】【Q】【A】【Enter】。之后,按键编辑器进入【Q】【B】【Enter】状态。

【数字】【Q】【C】【Enter】设置C相无功功率。操作同【数字】【Q】【A】【Enter】。 之后,按键编辑器进入【Q】【C】【Enter】状态。

☞ 接线方式设置:使用鼠标操作〖接线方式〗组合框或者操作面板上的【△
 /Y】按键可选择交流源的接线方式----3相4线、3相3线。

☞ Φ试验点设置:使用鼠标操作〖Φ试验点〗组合框或者操作面板上的
 【0.0L】、【0.5L】、【0.8L】、【1.0】、【0.5C】、【0.8C】、【0.0C】按键可选择
 交流源的不同Φ试验点。

在进行有功功率和无功功率设置前,请务必设置好Φ试验点,一旦Φ 试验点被确定,则最大有功功率和无功功率便被确定。例如:在 COS Φ=1.0 时,有功功率最大而无功功率为0;而在 COS Φ=0.0L 时,有功功率为0 而 无功功率最大。所以在试验或测试时对此一定要注意。

面板上的 4 试验点按键提供了一键到位功能。

◆ 在源输出前可使用 SET 按键进行参数设置。

3 相 4 线时顺序为: 〖Ua 幅度〗编辑框→〖Ub 幅度〗编辑框→〖Uc 幅度〗编辑框→〖Ia 幅度〗编辑框→〖Ib 幅度〗编辑框→〖Ic 幅度〗 编辑框→〖Ub 相位〗编辑框→〖Uc 相位〗编辑框→〖Ia 相位〗编辑框 →〖Ib 相位〗编辑框→〖Ic 相位〗编辑框→〖频率〗编辑框。

3相3线时顺序为:〖Uab幅度〗编辑框→〖Ucb幅度〗编辑框→〖Iab

幅度〗编辑框→〖Icb 幅度〗编辑框→〖Ucb 相位〗编辑框→〖Iab 相位〗 编辑框→〖Icb 相位〗编辑框→〖频率〗编辑框。

- ◆ 使用鼠标对〖直流表〗单选按钮进行操作可设置直流表量限。一旦知道 被测直流信号的幅度范围后,请尽量选择一个与该幅度范围较为接近的 量限,这样可保证你能获得尽可能高的测量精度。
- ◆ 测量电能误差时,请将被检电能表与 ZX3030X 电能脉冲输入插孔通过电能脉冲适配线进行正确连接,启动交流标准源后,软件会自动进行电能误差计算并进行显示。当然前提是你已在〖参数设置〗视窗中进行了正确的被检表电能常数及合适的电能脉冲测量个数设置。
- ◆ 当交流源处于输出状态时,输出电压短路或输出电流开路将被视作功率 放大器故障。软件将关闭交流源输出并弹出图9所示报警提示消息框。

	and a second sec
A相电压功	放
 取障!	
确定	
	A相电压功 故障! 确定

图 9 源报警提示消息框

2.2 直流标准源参数操作

当用鼠标选中标准源视窗中【交直流】单选按钮的【直流】选项时, 标准源视窗将处于直流标准源状态。此时所有交流源参数将处于变灰无效 状态。仅直流源参数可进行操作。

在直流标准源输出前可以对直流标准源的量限进行设置;设置完毕, 按下【源输出】按钮或【F1】键,ZX3030X将输出所设定的标准直流信号。

对于直流参数的设置与修改可以通过两种方式:

方式一:直接使用【百分比键】操作。直流源将按当前选择的量限百 分比进行输出。若直流源处于关闭状态,则打开并输出直流源,若直流源 己处于输出状态,则直接按量限百分比输出相应幅度。

方式二:通过面板按键编辑器进行操作。

【数字】【U】【Enter】设置直流电压源幅度,直流量限为电压量限时有效。如果直流源处于关闭状态,则打开并输出直流源。按键编辑器显示为U=××.××××V;光标指示当前欲调节细度。按【←】键可左移光标,按【→】键可右移光标。确定好调节细度后旋转编码器可对源输出幅度进行升/降调节。

【数字】【I】【Enter】设置直流电流源幅度,直流量限为电流量限时有效。如果直流源处于关闭状态,则打开并输出直流源。按键编辑器显示为 I=××.××××mA;光标指示当前欲调节细度。按【←】键可左移 光标,按【→】键可右移光标。确定好调节细度后旋转编码器可对源输 出幅度进行升/降调节。

3、电工试验视窗

【电工试验】视窗是一个综合电能质量试验界面。使用鼠标切换 TAB 控件,用户可方便地在一个界面中完成整个电能质量试验----谐波试 验、间谐波、闪变试验与骤升/骤降试验。

在标准源关闭状态,按下【源输出】按钮或【F1】按键,将打开并

输出标准源,同时【源输出】按钮变为【源停止】按钮。在标准源输出 状态,按下【源停止】按钮或【F1】键,将关闭并停止标准源输出。

3.1 谐波试验

图 10 为【谐波试验视窗】。本界面为用户提供了 2-60 次标准调制谐波 试验参数,用户可进行单次或任意多次谐波叠加输出。

进行谐波试验前,用户应设置好欲输出的电压与电流幅度。交流源关闭状态时,操作【源输出】按钮或【F1】按键将打开并输出交流源。

使用鼠标操作【-】按钮和【+】按钮可进行相序切换。制表框显示当前相序的各次谐波参数。使用鼠标或【SET】键可进行当前相序的谐波参数设置。请注意,各次谐波百分比含量叠加总和的最大值不能超过40%。否则谐波精度将受影响。

设置好谐波参数后,操作【谐波输出】按钮或【F2】键,将根据所设置的谐波参数输出谐波信号。

任何时候操作【谐波清零】按钮或【F3】键将会使所有谐波参数被清零。标准源回复到基波状态。

在源关闭状态,操作【返回】按钮或【ESC】键将退出电工试验视窗。

1A.\$X	含量(%)	相位	次数	含量(%)	相位	次数	含量(%)	相位	
Z次谐波	0.00	0.000	3次谐波	0.00	0.000	4次谐波	0.00	0.000	电压 100.0000
次谐波	0.00	0.000	6次谐波	0.00	0.000	7次谐波	0.00	0.000	由达 6 000000
次谐波	0.00	0.000	9次谐波	0.00	0.000	10次谐波	0.00	0.000	HEAR 13.000000
1次谐波	0.00	0.000	12次谐波	0.00	0.000	13次谐波	0.00	0.000	
4次谐波	0.00	0.000	15次谐波	0.00	0.000	16次谐波	0.00	0.000	- +
7次谐波	0.00	0.000	18次谐波	0.00	0.000	19次谐波	0.00	0.000	
0次谐波	0.00	0.000	21次谐波	0.00	0.000	22次谐波	0.00	0.000	
3次谐波	0.00	0.000	24次谐波	0.00	0.000	25次谐波	0.00	0.000	「石谷山(豆)
6次谐波	0.00	0.000	27次谐波	0.00	0.000	28次谐波	0.00	0.000	「你制山い」
9次谐波	0.00	0.000	30次谐波	0.00	0.000	31次谐波	0.00	0.000	The second second second
2次谐波	0.00	0.000	33次谐波	0.00	0.000	34次谐波	0.00	0.000	谐波输出(F2)
15次谐波	0.00	0.000	36次谐波	0.00	0.000	37次谐波	0.00	0.000	
18次谐波	0.00	0.000	39次谐波	0.00	0.000	10 次谐波	0.00	0.000	谐波清零(F3)
1次谐波	0.00	0.000	42次谐波	0.00	0.000	43次谐波	0.00	0.000	
14次谐波	0.00	0.000	45 次谐波	0.00	0.000	46 次谐波	0.00	0.000	:हान
7次谐波	0.00	0.000	48 次谐波	0.00	0.000	49 次谐波	0.00	0.000	
0次谐波	0.00	0.000	51次谐波	0.00	0.000	52次谐波	0.00	0.000	
3次谐波	0.00	0.000	54次谐波	0.00	0.000	55次谐波	0.00	0.000	
i6次谐波	0.00	0.000	57次谐波	0.00	0.000	58次谐波	0.00	0.000	
and the states of the states o	0 00	0.000	60次谐波	0.00	0.000				

图 10 谐波试验视窗

某次谐波百分比含量为零表示该次不参与叠加。

3.2 间谐波试验

图 11 为【间谐波试验视窗】。本界面为用户提供了 5 个不同次标准间 谐波试验参数,用户可进行单次或任意多次间谐波叠加输出。

进行间谐波试验前,用户应设置好欲输出的电压与电流幅度。交流源 关闭状态时,操作【源输出】按钮或【F1】按键将打开并输出交流源。

使用鼠标操作【-】按钮和【+】按钮可进行相序切换。制表框显示了 当前相序的各次间谐波参数。使用鼠标或【SET】键可进行当前相序的间谐 波参数设置。请注意,各次间谐波百分比含量叠加总和的最大值不能超过 40%。否则间谐波精度将受影响。

设置好间谐波参数后,操作【谐波输出】按钮或【F2】键,将根据所 设置的间谐波

参数输出间谐波信号。

任何时候操作【谐波清零】按钮或【F3】键将会使所有间谐波参数被

清零。标准源回复到基波状态。

在源关闭状态,操作【返回】按钮或【ESC】键将退出电工试验视窗。

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0.00 0.000 0.	CONTRACTOR 0.000 O.000	间谐波次数	间谐波含量	间谐波起始相位	<u>^</u>	
0.0 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0 0.000 0.000 0.0 <td< td=""><td>9.0 0.00 0.000 0.000 9.0 0.00 0.000 0.000 9.0 0.00 0.000 0.000 9.0 0.000 0.000 0.000 9.0 0.000 0.000 0.000 9.0 0.000 0.000 0.000 9.0 0.000 0.000 0.000 9.0 0.000 0.000 0.000 9.0 0.000 0.000 0.000 9.0 0.000 0.000 0.000 9.0 0.000 0.000 0.000 9.0 0.000 0.000 0.000 9.0 0.000 0.000 0.000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>0.0 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.00 0.0000 0.0000 0.0000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000</td><td>0.0</td><td>0.00</td><td>0.000</td><td>电日</td><td>100.0000 V</td></td<>	9.0 0.00 0.000 0.000 9.0 0.00 0.000 0.000 9.0 0.00 0.000 0.000 9.0 0.000 0.000 0.000 9.0 0.000 0.000 0.000 9.0 0.000 0.000 0.000 9.0 0.000 0.000 0.000 9.0 0.000 0.000 0.000 9.0 0.000 0.000 0.000 9.0 0.000 0.000 0.000 9.0 0.000 0.000 0.000 9.0 0.000 0.000 0.000 9.0 0.000 0.000 0.000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.00 0.0000 0.0000 0.0000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	0.0	0.00	0.000	电日	100.0000 V
0.0 0.0 0.0 0.0 0.00 0.00 0.00 0.00 0.	0.0 0.00 0.000 3.0 0.00 0.000 0.00 0.000 0.00 0.000 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	0.0 0.00 0.000 0.0 0.00 0.000 0.0 0.000 0.000 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	0.0	0.00	0.000	中語	E 000000 A
0.0 0.00 0.00 0.0 0.00 0.000	0.0 0.00 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.000 0.000 0.000 0.	0.0 0.00 0.000 0.0 0.00 0.000 - + 源输出(P1) 谐波输出(P2) 谐波清零(P3) 返回	0.0	0.00	0.000	1427	[]5.000000 A
0.0 0.00 0.00	0.00 0.00 0.00 0.000	0.0 0.00 0.000	0.0	0.00	0.000		
	万福田(F1) 资稿出(F1) 谐波稿出(F2) 谐波清零(F3) 返回	● 「「「「」」」」	0.0	0.00	0.000		_ +
▲ · · · · · · · · · · · · · · · · · · ·	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	▲ · · · · · · · · · · · · · · · · · · ·					源输出(F1)
	▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲	▲ · · · · · · · · · · · · · · · · · · ·				<u> </u>	f波制田(F2)
						iii	討法清零(F3)
							返回
		· · · · · · · · · · · · · · · · · · ·					
			•			<u> </u>	

间谐波次数为零或百分比含量为零表示该项不参与叠加。

3.3 闪变和骤升/骤降试验

图 12 为电能质量的重要试验-----【闪变和骤升/骤降试验视窗】。本界面为用户提供了灵活便捷的闪变和骤升/骤降试验操作。

操作【电工试验】单选按钮可选择进行闪变试验、骤升/骤降试验。

操作【交流源试验开关】多选按钮可选择某一相电压或多相电压源进行闪变试验、骤升/骤降试验。

【电压】编辑框可设置当前试验的电压源幅度。

交流源关闭状态时,操作【源输出】按钮或【F1】键将打开并输出交流源。 在源关闭状态,按下【返回】按钮或【ESC】按键将退出当前视窗。

小灯用于指示标准源的当前状态:闪烁指示标准源处于输出状态;关闭指 示标准源处于关闭状态。

☞ 闪变试验

本设备提供了两种闪变波形调制模式:矩形波调制与正弦波调制,通 过〖波形选择〗按钮可选择其中一种调制波形输出闪变信号。本设备提供 的标准闪变信号及计算出的 PST 值符合 IEC-868 标准、GB12326-2000 标准。

【频率】编辑框可用来设置欲输出闪变信号的调制波频率,频率范围为:

方波调制: 0.0233Hz~40.0000Hz

正弦调制: 0.0001Hz~40.0000Hz

〖ΔV/V〗编辑框可用来设置闪变电压变动值,该值不得大于 10.000%。

【占空比】编辑框仅在矩形波调制闪变信号时有用,用于设置矩形波调 制信号的占空比。

图 12 闪变和骤升/骤降试验视窗

在源关闭状态设置好闪变信号的相关参数后,按下〖源输出〗按钮或 【F1】按键打开并输出电压源,然后再按下〖开始试验〗按钮或【F2】按 键,输出标准闪变信号,同时〖开始试验〗按钮变为〖停止试验〗按钮, 此时〖PST〗编辑框中显示的便为根据当前闪变信号计算出的标准 PST 值。

用户可使用该信号进行各种闪变试验。检验或校验被检电能质量设备的闪 变测量值是否符合标准。

在闪变试验进行时,按下〖停止试验〗按钮或【F2】按键,闪变试验 将立即停止。当然也可通过按下〖源停止〗按钮或【F1】按键在关闭源输 出的同时停止当前试验。

☞ 骤升/骤降试验

骤升与骤降是两种不同的电能质量试验状态,通过〖升/降选择〗单选 按钮可选择其中一种状态。该试验提供了电压的标准瞬间突变信号。

〖△V/V〗编辑框可用来设置电压的骤升/骤降百分比,该值不得大于 10.000%。

【t1】编辑框用于设置骤升/骤降的延迟时间。

〖t2〗编辑框用于设置骤升/骤降的脉冲宽度。

〖t3〗编辑框用于设置骤升/骤降的脉冲结束后延迟时间。

其它操作同闪变试验。

4、参数设置视窗

图 13 为 【参数设置视窗】。该界面提供了对系统的相关参数进行设置并保存功能。

波特率 9600BPS	矢量图相序 ・ 顺时针 ○ 逆时针 □ 防硬菜
有功电能常数 3600000 i. 于功电能常数	mp/kW.h
表有功电能常数 36000 i: 表无功电能常数	mp/kW.h mp/kW.h
表脉冲数100	фр.куат. н
保存	返回
,	

图 13 参数设置视窗

串口通信参数:波特率、串口地址等。

本机电能常数:有功电能常数、无功电能常数等。

被检表电能常数:有功电能常数、无功电能常数、脉冲数等。其中脉冲数 为输入多少个电能脉冲计算一次电能误差。

矢量图相序:顺时针与逆时针相序输出选择,目前固定为顺时针相序。

按键音:目前未提供该项功能。

设置好参数后,按下〖保存〗按钮,所有参数被保存并弹出图 14 所示提示窗。

图 14 参数保存提示窗

任何时候按下〖返回〗按钮或【ESC】按键将退出参数设置视窗。

5、系统校准视窗

仪器在出厂前已经过校准。考虑到标准的偏差以及年漂移。用户可使 用图 15 所示〖系统校准视窗〗进行校准。

本视窗提供了交/直流两种状态,在源处于未输出状态时通过〖交直流〗 单选按钮可方便进行交直流状态切换。状态切换后,未使用参数将处于无 效状态。

红色 LED 用于指示源输出状态:红色 LED 闪烁指示源已处于输出状态; 红色 LED 不亮指示源处于关闭状态。

在标准源关闭状态,按下〖源输出〗按钮或【F1】按键,将打开并输 出标准源,同时〖源输出〗按钮变为〖源停止〗按钮。在标准源输出状态, 按下〖源停止〗按钮或【F1】键,将关闭并停止标准源输出。

在标准源关闭状态,操作〖返回〗按钮或【ESC】按键或【F2】按键将退出标准源视窗。

交流状态时,使用鼠标操作〖电压量限〗及〖电流量限〗组合框或者 使用面板【URANGE】按键和【IRANGE】按键,可方便对交流电压、电流量 限进行选择。

● 交直流 ● 直流 ●	幅度	A相	B相	C相	
由 医 暑限 100V 档 →	标准电压	100.000	100.000	100.000	v
电流量限 5A ▼	标准电流	5.00000	5.00000	5.00000	A
	实测电压	99.998	99.998	99.998	v
直流源量限	实测电流	4. 99999	4. 99999	4. 99999	A
1000V 30V 25A 20mA 600V 10V 5A 10mA 300V 1V 1A 1mA	相位	A相	B相	C相	
150V C 200mV C 200mA C 100uA	电压标准相位	0.000	120.000	240.000	•
	电流标准相位	0.000	120.000	240.000	•
- 校准点 © 20% ○ 100%	电压实测相位	0.000	120.000	240.000	•
	电流实测相位	0.000	120.000	240.000	°
标准值一 2.00000 ♥	标准频率	50.0000	Hz 实测频率	z	Hz
	0000	v	۲		
C 5V C 10mA C 2.5V C 5mA 标准值一 2.0000	000	v Iß	输出(F1)	退出(F2)	修改部

图 15 系统校准视窗

若存在密码,在进入《系统校准视窗》前系统会要求用户输入正确的 密码,否则系统将拒绝非法的用户登录。图 16 为密码输入窗。密码最长不 能超过 16 个字符。请尽量使用容易记忆的密码。否则会给自己造成不必要 的麻烦。

密码 🛛	*****	
) market	

图 16 密码输入窗

按下〖修改密码〗按钮将弹出图 17 密码修改窗,用户可将密码修改为自己容易记住的密码。若新密码为空,系统会认为你已经取消了密码!

密码修改窗体	
输入旧密码	****
输入新密码	****
确认新密码	****
備认	退出

图 17 密码修改窗

输入正确的旧密码后,再输入新密码,最后再确认一下新密码,新密码便输入成功。

当然你别忘了最后应通过〖确认〗按钮对新密码进行保存,否则你的 新密码不起作用!

六、装箱清单

	ZX3030X 三相谐波标准源	1台
	2米三芯电源线	1根
	1.5 米 4mm ² 电压输出线(黄绿红黑)	4根
	1.5 米 6mm ² 电流输出线(黄绿红黑)	3根
	电能脉冲测试线(输入、输出)	2 根
	直流信号测试线	1根
	PS2 接口 PC 小键盘及鼠标	1套
	说明书	1份
	测试报告	1份
	合格证/保修卡	1张
\triangleright	铝合金箱	1个